0 1 . 1 Table 2 lists five different quantities of memory, each measured using different units. Place the quantities of memory into order by writing the numbers 1 to 5 in the **Position** column of **Table 2**, with 1 representing the smallest quantity and 5 representing the largest quantity. [2 marks] Table 2 | Quantity | Position | |-------------|----------| | 3 kilobytes | | | 2 mebibytes | | | 2 bytes | | | 2 megabytes | | | 20 bits | | | 0 2 . 1 | How many different values can be represented using two bytes? | [1 mark] | |---------|---|----------| | | | | | 0 3.1 | How many different values can be represented using 10 bits? | [1 mark] | |-------|---|----------| | | | | | 0 4.1 | Shade | e in one lozenge | to indicate which of the following prefixes represents 10 ⁶ [1 mark] | |-------|-------|-------------------------|---| | | Α | kibi | | | | В | mebi | | | | С | gibi | | | | D | kilo | | | | E | mega | | | | F | giga | | Highest: | 0 4 . 2 | Table 1 shows | s two unsigned | binary | / inte | gers, | Num | ber 1 | and | Numl | ber 2. | | |---------|--|------------------|--------|--------|-------|-------|--------|-------|--------|--------|---------------------| | | Complete the table to show the result in binary of adding the two numbers. | | | | | | | | | | | | | You must complete the carry row to show the carry from the previous column where there is one. | | | | | | | | | | | | | Table 1 | | | | | | | | | | | | | | Number 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | | | | Number 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | | | Result | | | | | | | | | | | | | Carry | [1 mark | | 0 4 . 3 | What is the result of subtracting the two's complement binary number 00100100 from the two's complement binary number 00011011? You should give your answer in two's complement binary. You must show all your working in binary. | | | | | | | | | | | | | [2 marks | 0 4.4 | | hat are the lowe | | | | alues | s that | can b | oe rep | oreser | nted by an [1 mark] | | | | | | | | | | | | | | Lowest: | 0 4 . 5 | What is the decimal equivalent of the bit pattern shown in Figure 1 if it represents an unsigned fixed-point binary value with two bits before the binary point and six bits after the binary point? Figure 1 | |---------|---| | | 1 1 0 1 1 0 1 | | | [2 marks | | | | | | | | | |